domingo, 11 de octubre de 2015

PRINCIPIOS DE PASCAL Y ARQUIMEDES


PRINCIPIOS DE PASCAL Y ARQUIMEDES

En fisica, el principio de Pascal o ley de Pascal, es una ley enunciada por el físico y matemático francés Blaise Pascal (1623–1662) que se resume en la frase: la presión ejercida sobre un fluido poco compresible y en equilibrio dentro de un recipiente de paredes indeformables se transmite con igual intensidad en todas las direcciones y en todos los puntos del fluido.1
El principio de Pascal puede comprobarse utilizando una esfera hueca, perforada en diferentes lugares y provista de un émbolo. Al llenar la esfera con agua y ejercer presión sobre ella mediante el émbolo, se observa que el agua sale por todos los agujeros con la misma velocidad y por lo tanto con la misma presión.
También podemos ver aplicaciones del principio de Pascal en las prensas hidráulicas, en los elevadores hidráulicos y en los frenos hidráulicos.

Prensa hidráulica


La prensa hidráulica es una máquina compleja que permite amplificar la intensidad de las fuerzas y constituye el fundamento de elevadores, prensas hidráulicas, frenos y muchos otros dispositivos hidráulicos de maquinaria industrial.
La prensa hidráulica constituye la aplicación fundamental del principio de Pascal y también un dispositivo que permite entender mejor su significado. Consiste, en esencia, en dos cilindros de diferente sección comunicados entre sí, y cuyo interior está completamente lleno de un líquido que puede ser agua o aceite Dos émbolos de secciones diferentes se ajustan, respectivamente, en cada uno de los dos cilindros, de modo que estén en contacto con el líquido. Cuando sobre el émbolo de menor sección S1 se ejerce una fuerza F1 la presión p1 que se origina en el líquido en contacto con él se transmite íntegramente y de forma casi instantánea a todo el resto del líquido. Por el principio de Pascal esta presión será igual a la presión p2 que ejerce el fluido en la sección S2, es decir:
p_1 = p_2 \,

con lo que las fuerzas serán, siendo, S1 < S2 :
F_1 = p_1 S_1 < p_1 S_2 = p_2 S_2 = F_2\,

y por tanto, la relación entre la fuerza resultante en el émbolo grande cuando se aplica una fuerza menor en el émbolo pequeño será tanto mayor cuanto mayor sea la relación entre las secciones:
F_1 = F_2 \left( \frac{S_1}{S_2} \right)

El principio de Arquímedes es un principio físico que afirma que: «Un cuerpo total o parcialmente sumergido en un fluido en reposo, recibe un empuje de abajo hacia arriba igual al peso del volumen de fluido que desaloja. Esta fuerza1 recibe el nombre de empuje hidrostático  y se mide en newtons (en el SIU). El principio de Arquímedes se formula así:
E = m\;g = \rho_\text{f}\;g\;V\;
o bien
\mathbf E = - m\;\mathbf g = - \rho_\text{f}\;\mathbf g\;V\;
 Donde E es el empujeρf es la densidad del fluido, V el «volumen de fluido desplazado» por algún cuerpo sumergido parcial o totalmente en el mismo, g la aceleración de la gravedad y m la masa, de este modo, el empuje depende de la densidad del fluido, del volumen del cuerpo y de la gravedad existente en ese lugar. El empuje (en condiciones normales y descrito de modo simplificado ) actúa verticalmente hacia arriba y está aplicado en el centro de gravedad del fluido desalojado por el cuerpo; este punto recibe el nombre de centro de carena.
File:Submerged-and-Displacing.svg

LA TERMODIMICA





Termodinámica

La termodinámica puede definirse como el tema de la Física que estudia los procesos en los que se transfiere energía como calor y como trabajo.
Sabemos que se efectúa trabajo cuando la energía se transfiere de un cuerpo a otro por medios mecánicos. El calor es una transferencia de energía de un cuerpo a un segundo cuerpo que está a menor temperatura. O sea, el calor es muy semejante al trabajo.


Primera Ley de la Termodinámica

Esta ley se expresa como:

 Eint = Q - W
Cambio en la energía interna en el sistema = Calor agregado (Q) - Trabajo efectuado por el sistema (W)
El signo menos en el lado derecho de la ecuación se debe justamente a que W se define como el trabajo efectuado por el sistema.
Para entender esta ley, es útil imaginar un gas encerrado en un cilindro, una de cuyas tapas es un émbolo móvil y que mediante un mechero podemos agregarle calor. El cambio en la energía interna del gas estará dado por la diferencia entre el calor agregado y el trabajo que el gas hace al levantar el émbolo contra la presión atmosférica.


Segunda Ley de la Termodinámica

La primera ley nos dice que la energía se conserva. Sin embargo, podemos imaginar muchos procesos en que se conserve la energía, pero que realmente no ocurren en la naturaleza. Si se acerca un objeto caliente a uno frío, el calor pasa del caliente al frío y nunca al revés. Si pensamos que puede ser al revés, se seguiría conservando la energía y se cumpliría la primera ley.

En la naturaleza hay procesos que suceden, pero cuyos procesos inversos no. Para explicar esta falta de reversibilidad se formuló la segunda ley de la termodinamica, que tiene dos enunciados equivalentes:
Enunciado de Kelvin - Planck : Es imposible construir una máquina térmica que, operando en un ciclo, no produzca otro efecto que la absorción de energía desde un depósito y la realización de una cantidad igual de trabajo.
Enunciado de Clausius: Es imposible construir una máquina cíclica cuyo único efecto sea la transferencia continua de energía de un objeto a otro de mayor temperatura sin la entrada de energía por trabajo.


Ley Cero de la Termodinámica (de Equilibrio):
"Si dos objetos A y B están por separado en equilibrio térmico con un tercer objeto C, entonces los objetos A y B están en equilibrio térmico entre sí".
Como consecuencia de esta ley se puede afirmar que dos objetos en equilibrio térmico entre sí están a la misma temperatura y que si tienen temperaturas diferentes, no se encuentran en equilibrio térmico entre sí.
Tercera Ley de la Termodinámica.
La tercera ley tiene varios enunciados equivalentes:
"No se puede llegar al cero absoluto mediante una serie finita de procesos"
Es el calor que entra desde el "mundo exterior" lo que impide que en los experimentos se alcancen temperaturas más bajas. El cero absoluto es la temperatura teórica más baja posible y se caracteriza por la total ausencia de calor. Es la temperatura a la cual cesa el movimiento de las partículas. El cero absoluto (0 K) corresponde aproximadamente a la temperatura de - 273,16ºC. Nunca se ha alcanzado tal temperatura y la termodinámica asegura que es inalcanzable.
"La entropía de cualquier sustancia pura en equilibrio termodinámico tiende a cero a medida que la temperatura tiende a cero".
"La primera y la segunda ley de la termodinámica se pueden aplicar hasta el límite del cero absoluto, siempre y cuando en este límite las variaciones de entropía sean nulas para todo proceso reversible".




sábado, 10 de octubre de 2015

LEYES DE NEWTON Y MOMENTO DE UNA FUERZA

Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinámica, en particular aquellos relativos al movimiento de los cuerpos.
Leyesnewton001
Isaac Newton
Las Leyes de Newton permiten explicar tanto el movimiento de los astros como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.

Fundamentos teóricos de las leyes

El primer concepto que maneja Newton es el de masa, que identifica con "cantidad de materia".
Newton asume a continuación que la cantidad de movimiento es el resultado del producto de la masa por la velocidad.
En tercer lugar, precisa la importancia de distinguir entre lo absoluto y relativo siempre que se hable de tiempo, espacio, lugar o movimiento.
En este sentido, Newton, que entiende el movimiento como una traslación de un cuerpo de un lugar a otro, para llegar al movimiento absoluto y verdadero de un cuerpo compone el movimiento (relativo) de ese cuerpo en el lugar (relativo) en que se lo considera, con el movimiento (relativo) del lugar mismo en otro lugar en el que esté situado, y así sucesivamente, paso a paso, hasta llegar a un lugar inmóvil, es decir, al sistema de referencias de los movimientos absolutos.
De acuerdo con esto, Newton establece que los movimientos aparentes son las diferencias de los movimientos verdaderos y que las fuerzas son causas y efectos de estos. Consecuentemente, la fuerza en Newton tiene un carácter absoluto, no relativo.
Estas leyes enunciadas por Newton y consideradas como las más importantes de la mecánica clásica son tres: la ley de inercia, relación entre fuerza y aceleración, y ley de acción y reacción.
Newton planteó que todos los movimientos se atienen a estas tres leyes principales formuladas en términos matemáticos. Un concepto es la fuerza, causa del movimiento; otro es la masa, la medición de la cantidad de materia puesta en movimiento; los dos son denominados habitualmente por las letras F y m.
Leyesnewton003
Primera ley de Newton o ley de la inercia
En esta primera ley, Newton expone que “Todo cuerpo tiende a mantener su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas ejercidas sobre él”.
Esta ley postula, por tanto, que un cuerpo no puede cambiar por sí solo su estado inicial, ya sea en reposo o en movimiento rectilíneo uniforme, a menos que se aplique unafuerza neta sobre él. Newton toma en cuenta, sí, que los cuerpos en movimiento están sometidos constantemente a fuerzas de roce o fricción, que los frena de forma progresiva.
Por ejemplo, los proyectiles continúan en su movimiento mientras no sean retardados por la resistencia del aire e impulsados hacia abajo por la fuerza de gravedad.
La situación es similar a la de una piedra que gira amarrada al extremo de una cuerda y que sujetamos de su otro extremo. Si la cuerda se corta, cesa de ejercerse la fuerza centrípeta y la piedra vuela alejándose en una línea recta tangencial a la circunferencia que describía (Tangente: es una recta que toca a una curva sin cortarla). (Ver figura 2).

Leyesnewton005
Segunda ley de Newton o ley de aceleración o ley de fuerza
La segunda ley del movimiento de Newton dice que “Cuando se aplica una fuerza a un objeto, éste se acelera. Dicha a aceleración es en dirección a la fuerza y es proporcional a su intensidad y es inversamente proporcional a la masa que se mueve”.
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección.
En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos.
Ejemplo: Si un carro de tren en movimiento (ver figura 3), con una carga, se detiene súbitamente sobre sus rieles, porque tropezó con un obstáculo, su carga tiende a seguir desplazándose con la misma velocidad y dirección que tenía en el momento del choque.
Leyesnewton007
Otro ejemplo puede ser: una pelota de fútbol impulsada con una velocidad determinada hacia arriba (según la línea roja segmentada del dibujo, figura 4), seguiría en esa misma dirección si no hubiesen fuerzas que tienden a modificar estas condiciones.
Estas fuerzas son la fuerza de gravedad terrestre que actúa de forma permanente y está representada por las pesas en el dibujo, y que son las que modifican la trayectoria original. Por otra parte, también el roce del aire disminuye la velocidad inicial.

Otro ejemplo: Si queremos darle la misma aceleración, o sea, alcanzar la misma velocidad en un determinado tiempo, a un automóvil grande y a uno pequeño (ver figura 5), necesitaremos mayor fuerza y potencia para acelerar el grande, por tener mayor masa que el más chico.
Leyesnewton009

Leyesnewton011

Si un caballo tira de una piedra unida a una cuerda (figura 6), el caballo es igualmente tirado por la piedra hacia atrás; porque la cuerda, tendiendo por el esfuerzo a soltarse, tirará del caballo hacia la piedra tanto como la piedra lo haga hacia el caballo, e impedirá el progreso de uno tanto como avanza el otro.

Tercera Ley de Newton o Ley de acción y reacción
Enunciada algunas veces como que "para cada acción existe una reacción igual y opuesta".
En términos más explícitos: La tercera ley expone que por cada fuerza que actúa sobre un cuerpo, éste realiza una fuerza de igual intensidad y dirección pero de sentido contrario sobre el cuerpo que la produjo.
Dicho de otra forma, las fuerzas siempre se presentan en pares de igual magnitud, sentido opuesto y están situadas sobre la misma recta.

CONOCIENDO LA CIENCIA DE LA FISICA






CONCEPTO

La Física es una de las ciencias naturales que más ha contribuido al desarrollo y bienestar del hombre, porque gracias a su estudio e investigación ha sido posible encontrar en muchos casos, una explicación clara y útil a los fenómenos que se presentan en nuestra vida diaria.
La palabra física proviene del vocablo griego physiké cuyo significado es naturaleza.
Es la Ciencia que se encarga de estudiar los fenómenos naturales, en los cuales no hay cambios en la composición de la materia.

IMPORTANCIA

La teoría de la física es responsable de los grandes descubrimientos en el campo de la electrónica que generaron los avances en las  modernas y los medios electrónicos.

  • Electricidad


Uno de los descubrimientos más grandes del hombre es la electricidad. A través de una comprensión adecuada de la física, hemos podido extenderla a algo útil para la electricidad, que no es más que una gran conexión de elementos electrónicos. Al crear una diferencial de voltaje mediante algo tan sencillo como una batería, podemos hacer que los elementos electrónicos se muevan, que es la base de la electricidad. Los electrones en movimiento le dan energía al circuito que hace que las radios, los televisores, las luces y todos los dispositivos electrónicos funcionen.

  • Transistor

Un transistor es la pieza más básica de una computadora, que ha permitido la creación de chips y, por ende, la era de la computadora. El transistor se creó gracias a un descubrimiento en el ámbito de la física del estado sólido: la invención del semiconductor. Estos son simplemente piezas de elementos que actúan diferente en distintas temperaturas y voltajes. Esto significa que si se aplican diferentes voltajes, se puede hacer que un semiconductor retenga información, que se almacena porque, hasta que apliques otro voltaje para modificarlo, el semiconductor emite un voltaje alto o bajo. Los voltajes altos se interpretan como 1 y los bajos como 0. Mediante este sencillo sistema, todas las computadoras tienen la capacidad de almacenar información en miles de millones de pequeños transistores.

  • Vuelo

El avance del aeroplano se debe principalmente a avances en el campo de la física. Los aviones pueden volar gracias a las fórmulas de la dinámica de fluidos de Bernuolli. La cantidad de personas que puede cargar un avión es proporcional a la propulsión que puede generar. Esto es así porque la propulsión empuja al viento hacia adelante, y el aire forma curvas sobre las alas y genera el levantamiento. El aire que forma curvas sobre las alas genera una zona de baja presión, y el aire que se mueve más lento debajo del ala empuja hacia arriba. Cuanto más rápido es el viento, más levantamiento genera y más peso puede cargar el avión.

Viaje espacial


La ciencia espacial depende en gran medida de la física, dado que las fórmulas de propulsión y combustión provienen directamente de ese campo del saber. La fuerza de la combustión es una cantidad medible y se puede dirigir mediante una tobera para crear propulsión. Con estas ecuaciones, se puede calcular la propulsión necesaria para lograr el despegue. El vacío del espacio se supera gracias a la comprensión de la presión. La baja presión en el exterior de la nave se tiene que superar mediante un cierre con suficiente fuerza. Se pueden utilizar cálculos de presión para determinar la fuerza del cierre. En conclusión, si consideramos el viaje en el espacio como uno de los más grandes logros del hombre, el futuro de la humanidad estaba determinado por el conocimiento de la física.

  • Energía nuclear

La bomba nuclear, una de las armas más poderosas de la humanidad, está directamente relacionada con la física. Una bomba atómica utiliza un proceso llamado fisión para dividir átomos pesados. El proceso nos permite desbloquear la energía inherente a la materia. Este conocimiento sobre la materia también nos permite producir impensadas cantidades de energía que podemos utilizar para otros fines, fuera del ámbito militar. Asimismo, la fusión, o la combinación de diferentes átomos, podría ser la solución para todas nuestras necesidades energéticas.








Bienvenidos!!!







La Física y la Vida


https://www.youtube.com/watch?v=Y0QsAsUKqw8&noredirect=1